Adeno-associated Virus Alters Levels of Immune Proteins in the Brain

Betsy Vasquez ’20, NEU
Boulanger Lab, Princeton University
Funded by CHW under the Internships in Global Health program

Introduction
• Viruses are widely used tools in neuroscience research
• Among the most commonly used viruses are forms of adeno-associated virus (AAV)
• Recent studies reveal that several immune proteins perform critical, non-immune functions in the nervous system
• It is unknown whether viral injections may still be changing the levels of immune proteins in the brain
• Determining how viruses can affect non-immune proteins is critical to optimizing viruses as research and clinical tools in global health settings

Objective of the Study
To explore whether viral injections may affect the structure and/or function of the central nervous system by disrupting non-immune functions of immune proteins in the brain

Discussion
• In injected areas, virus persistently upregulates multiple immune proteins
 • Sham: increase in C3a only
 • Vehicle: decrease H-2K and C3a in somatosensory cortex, increase in H-2K and C3 in motor cortex
• In non-injected hippocampus, viral injections have no net effect on immune protein levels
 • Vehicle downregulates fyn
 • Sham downregulates multiple immune proteins

Future Directions
This year I will work with the AAV virus to learn more of how this particular virus can alter important, non-immune functions in the brain. In particular, I am interested in determining if dysregulation of these proteins’ non-immune functions may contribute to increased cancer risk following viral infection.

Conclusion
• Viral injections persistently dysregulate immune proteins in multiple regions of the central nervous system
 • Could potentially alter circuit anatomy and physiology
• Un-operated and vehicle controls will help isolate the circuit effects of virally-delivered tools from the circuit effects of the virus itself

Acknowledgements
I would like to thank the Boulanger Lab, specifically Professor Boulanger and Dr. Christos Suriano, for allowing me to take part in this research. I would also like to thank my colleague, Martin Rosenfeld, for all of his help. Finally, I would like to thank the Center for Health and Wellbeing for their generous funding.