Introduction
• The continued rise of antibiotic resistance poses a growing public health crisis
• Only through monitoring can policymakers and public health officials implement strategies to combat the rise

Objective
Although the US does conduct systematic antibiotic resistance surveillance, its efforts is not sufficient. This project aims to strengthen the data available to public health officials to allow them to propose more informed policy to slow the spread of resistance.

Background
• This project is an extension of the existing ResistanceBank project (PI: Boeckel) which aims to map resistance trends in LMICs.
• By using Point Prevalence Surveys, we are able to extract additional resistance data collected by individual researchers in a systematic way

Progress:
• Through the National Antimicrobial Resistance Monitoring System, we have collected systematic surveillance data from the FDA and USDA although we have been unsuccessful at collecting geospatial isolate data from the USDA. We have reformatted NARMS data to match the ResistanceBank dataset for easier geospatial mapping
• We have begun extracting point prevalence surveys from three bibliographic databases: PubMed, Scoups, and Web of Knowledge. We initially extracted 18,000 studies and through various screenings will include approx. 200 studies as part of the PPS arm of the study. We expect that the additional PPS arm will provide information on an additional ~100,000 isolates.

Looking ahead
• We hope that geospatial data can be obtained from the USDA dataset through a FOIA request and we continue to screen and extract PPS data. We are considering the omission of USDA data as a possible positive considering that USDA provides retail meat resistance data which cannot be spatially correlated as retail meat is incorporated in the entire global meat market.

Conclusion
• We continue to believe that this project will provide valuable data in regards to antimicrobial resistance trends

Acknowledgements
Special thanks to Professor Thomas Van Boeckel, Joao Pires, and Katie Tiesto at ZTH Zurich for providing their guidance on this project.
Additional thanks to the Department of Ecology and Evolutionary Biology and the Office of Undergraduate Research for providing additional funding for this project.