Introduction

• Moving past the study of parasite-host interactions alone to within-host parasite-parasite interactions to understand disease.

• Raccoons live in human-occupied habitats and are infected by many species of parasites, some cause severe disease in humans and other animals.

• Parasite-parasite interactions may stifle disease control efforts.

• Therefore understanding how co-infection in raccoons affects parasite dynamics is of public health importance.

Objective of Study

To investigate:

• If there is parasite aggregation in certain demographic groups.

• If parasite species are found more or less often together than expected.

• The shape of the relationship between gastrointestinal nematode burden and egg count.

Methods

• Cross-sectional sampling using trap-and-release of wild raccoons in the Burlington, VT area headed by the USDA.

• Nearly 400 raccoons sampled over 10 days.

• Fecal and blood samples taken; body measurements and estimated age noted.

• McMaster fecal floats performed in laboratory; DNA sequencing of fecal samples in progress.

Results

• 390 raccoons sampled.

• Significant proportion of animals sampled were juveniles, due to season.

• Blood and serum collected from nearly all animals.

• Fecal samples for microscopy collected from 254 animals.

<table>
<thead>
<tr>
<th>Parasite Type</th>
<th># Samples Infected</th>
<th>% Samples Infected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coccidia</td>
<td>206</td>
<td>81.1</td>
</tr>
<tr>
<td>B. procyonis</td>
<td>54</td>
<td>9.45</td>
</tr>
<tr>
<td>Strongyle-type</td>
<td>73</td>
<td>28.7</td>
</tr>
<tr>
<td>Capillarid-type</td>
<td>52</td>
<td>20.6</td>
</tr>
</tbody>
</table>

Table 1: Number of samples and percentage of fecal samples examined via McMaster protocol infected with the four most commonly seen parasitic species/types.

• Parasites revealed by McMaster protocol include: coccidia, *Baylisascaris procyonis*, strongyle-type, capillarid-type, strongyloides, as well as eggs and larvae of unidentified type; not all live in GI tract.

• McMaster protocol allows for calculation of coccidial, egg, and larval burden per gram of fecal matter; low burdens are seen in many individuals while high burdens are found in few.

Discussion

• Initial results from McMaster suggest parasitic population aggregation (most animals have a few parasites; few have the most parasites).

• *Baylisascaris procyonis* infection less common than expected, may be due to large proportion of juveniles.

Questions

• What remains to be said from DNA sequencing?

• How does this data differ from similar data collected in 2018?

• What statistical analysis of this data is best to answer the study questions?

Final Thoughts

• Research has only begun; substantial further efforts will be required throughout the coming year to complete this study.

Acknowledgements

I would like to thank Liana Wait, Professor Andrea Graham, and her lab for their guidance and support, the USDA’s National Rabies Management Program and its staff, and the funding sources that made this possible: CHW, WWS, EEB, PEI, and OUR.

PCR has been recently completed on fecal samples and DNA analysis of these products is currently in progress.

Suzanne Lange, 2020, Ecology & Evolutionary Biology
USDA-APHIS National Rabies Management Program in Burlington, VT | Laboratory of Prof. Andrea Graham
Funded by the Center for Health and Wellbeing

B. procyonis egg; Retrieved from cdc.gov