
Introduction
• High-throughput drug discovery 

allows many different structural 
variations of a drug to be created

• However, how effective a given 
structure is is difficult to test without 
producing the drug in a lab

• Machine learning allows for the 
prediction of the binding affinity to 
select the most promising drugs 
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Results

Methods
• Calculate structural properties 

using Rosetta, and split into 
training and testing set

• Research and apply various 
different Machine Learning 
methodologies to training set with 
k-means validation

• Apply most promising result to 
testing set

• The hyperparameter tuning looked to minimize 
the mean squared error of k-fold cross 
validation, a method allowing us to see if our 
model accurately predicted unseen data

• Ultimately, the results of the neural network 
were combined with other machine learning 
methods to make a "super-learner" model

Objective of the Study
We hoped to test various different 
Machine Learning methods to see if 
there was a way to accurately predict 
protein-protein binding affinity.

• We attempted using different dimensionality 
methods (PCA, UMAP, LDA)  in combination 
with the regression methods below; it was 
found that the best results were found using 
the entire dataset

• The parameters were calculated using 
Rosetta, which uses protein structures to 
make calculations of interactions between 
and within the proteins.

• We experimented with different calculated 
parameters until we again found a molecular 
simulation which provided the best results

Discussion
• There is much more testing and 

research to be done in this field to 
help bring the optimal results

• Our model's shortcomings can be 
seen in its high RMSE - in the 
future, more accurate (and 
complex) methods and tools can 
help with lowering this

• The algorithms are also "black 
box" - we don't know why they 
work the way they do

Conclusion
We used the features of 
previously-solved protein-protein 
complexes to calculate features of 
these complexes, then used these 
features to create a neural network to 
predict the results within 2.3 kJ/mol
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• We used a hyperparameter tuning to determine 
the best set of combinations in a neural 
network. The hyperparameters we tuned 
included dropout rate, regularization, dropout 
function, number of hidden layers, and size of 
hidden layers.

• We tuned using Bayesian Hypertuning, which 
uses the results of previous neural network 
iterations to predict the optimal set of 
parameters


